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ABSTRACT

Some fundamental formulas are derived which are corrections to geometrical

optics for radiation from bounded wavefronts. These formulas apply in both the

near and far field, in focal and caustic regions, and in lit, twilight, and dark zones.

Applications are made to improving the gain of a spherical reflector and the analy-

sis of (generally unwanted) focussing of spillover energy in microwave systems.

Earlier applications were in the design of low noise feeds and line source

feeds for spherical reflectors.



I - INTRODUCTION

Geometrical optics is commonly used in the design of microwave an-

tennas. The parabolic reflector, the microwave lens, the shaped beam reflector,

are but a few of the common applications. Geometrical optics is often alleged

to be accurate in these applications provided the characteristic dimensions of

the reflector or lens are large compared to the wavelength or depending on the

particular situation, if one is not too close to a focal region, a caustic, a shadow

boundary, or if one is or is not in the "far field. "

The author has previously considered two antenna design problems,

wherein geometrical optics was an important guide, but not sufficiently accurate

to obtain essential design information. These were (a) design of a line source

feed for a spherical reflector[ l and (b) design of horns for high aperture effici-

ency, low spillover, and broad bandwidthllZ] In both cases physical optics con-

siderations did prove sufficiently precise for all practical needs. However,

also, relatively simple corrections to geometrical optics proved as satisfactory

as physical optics and very helpful for obtaining physical insight.

It turns out that properly applied these corrections often permit use of

geometrical optics with reasonable accuracy for dimensions down to one wave-

length or in focal or caustic regions.

The correction terms sought are not essentially different from those

considered by Keller and others [3] at NYU but we are concerned directly with

situations which arise in the design of microwave feeds and antennas.

One purpose of this report is to present some practical examples.
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Geometrical optics deals with rays and wavefronts. The field strength

and phase at any point can be obtained from the path length from the source to

the point along the ray or rays which pass through the point. Similarly the am-

plitude of the field is associated with the density of the rays near the point. No

difficulty with this picture generally arises as long as the wavefronts have no

boundaries, Le. are either infinite or are closed. However, as soon as a finite

reflector, aperture, or a finite distributed source is introduced into the picture,

one is dealing with "pieces" of wavefronts which are bounded in the sense that

the field is usually and properly assumed to terminate abruptly at the boundary.

It is perhaps surprising that the assumption that the field vanishes or

satisfies some simple impedance condition in a boundary plane outside the aper-

ture of a horn in free space or outside of the reflector surface of a paraboloid

is not a bad one. For practical purposes one need not look for the edge currents

which are actually flowing in the boundary structure to provide correction terms

to geometrical optics. To see where the correction terms to geometrical optics

arise from consider the general physical optics formula for the field at a point

P ahead of a wavefront in terms of a surface integral over the wavefront as

given, for example, by eq(43), p. 11 9 of [4]:

(up = u(1 +cos I) e-jkrdS

S

where $ is the angle between n, the outward nor mal of the wavefront S, and

r the vector of length r from the integration point to the observation point P,
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u is the field over S and k = Zr/X. The wavefront S may be a closed surface

or, the more common case in microwave optics, an open surface, such as the

front surface of a reflector or the aperture of a horn, lens, reflector, or array,

i. e. a surface having a boundary. The geometrical optics theorems can be ob-

tained from the stationary phase approximation applied to (1) as is done in ref-

erence [4] in the pages following p. 119. Several assumptions are necessary for

these approximations. The most basic of these is usually stated as the necessity

for k large. When the area of integration is an open surface with a boundary

a more accurate formulation of this assumption is that there should occur a

large number of phase cycles of the exponential in (1) as the integration point

varies from the stationary phase point to any boundary point. The location of

the stationary phase point(s) is (are) readily determined as the point(s) in which

the ray(s) through P intersect the wavefront S. S can be thousands of wave-

lengths across, k can correspond to optical frequencies, and the stationary

phase approximation can be very poor. The most common example occurs if

r is almost constant over S i. e. P is in a focal region. Another common

failure occurs if the amplitude distribution varies appreciably near the stationary

phase point. An important example of this is given in Section 4.

A simple way to visualize these effects is by the use of Fresnel zones.

With a little practice Fresnel zones are almost as easy to visualize as rays

and wavefronts and are of considerable help.

Fresnel zones are nested zones on a wavefront which surround a

stationary phase point They of course depend on the particular wavefront in
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question, but also they depend on the observation point. There is also a different

set of Fresnel zones for each stationary phase point. More explicitly the nth

Fresnel zone is defined as the region of the wavefront for which

(2) (n - l)w < lk(r-p)l < nr,

where p is the distance from P to the stationary phase point, i. e, the point

where the ray through P intersects the wavefront.

The first Fresnel zone contains all points on the wavefront immediately

surrounding the stationary phase point which add constructively with the contri-

bution to P of the stationary phase point. The second Fresnel zone contains

all points of the wavefront immediately surrounding the first Fresnel zone which

subtract or add destructively to the contribution from the first Fresnel zone -

and so on. It is convenient therefore to think of the first Fresnel zone as 14",

the second "-", etc. If one is looking for gain at P, it is not a bad idea to think

of the first Fresnel zone as "good, " the second as "bad, " etc.

If the integrands are slowly varying, the contributions at P of the

different Fresnel zones are roughly proportional to their area. When the wave-

front has a boundary, some of the Fresnel zones will be intersected by or "cut"

the boundary and their area is accordingly diminished. The part of the Fresnel

zone inside of the boundary is called the "illuminated" part.

If the first Fresnel zone cuts the boundary, the observation point P is

said to be in the twilight zone. If the first Fresnel zone is entirely outside of
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the boundary, P is in the dark zone, if entirely inside of the boundary (i. e.

entirely illuminated), P is in the lit zone. If the stationary phase point is

exactly on the boundary so that the first Fresnel zone is usually about half

illuminated, P is on the shadow boundary. If the re is more than one stationary

phase point, these definitions apply with respect to each stationary phase point-

the relative regions of one may have no relation to those of the other. (SeeFig. 1).

II - DERIVATION OF FUNDAMENTAL FORMULAS

Any rectangular component of the E or H field at a point P inside a

free space region bounded by any smooth closed surface S may be expressed by

the Huygens-Green relation as an integral over S as follows:

(3 Up = jk + SH os
(3 4w er FU kr)cos * Y8n

S

(eq(5), p. 109, [4]), where u, k, r, and f are as previously defined.

If on the surface S a geometrical optics description of the field is

valid, we may write u on S as

(4) u = Jule-jko

where 0 is a phase function satisfying

(5) IVOI = [4 P. 1153
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If the relative change in the amplitude Iul is small compared to unity over a

wavelength distance, we may write

(6) On jku n=jku cos a

where a is the angle between the outward normals to the wavefront and to

the surface S Furthermore if the observation point P is several wavelengths

from S, the term jk is much larger than I/r in (3) and (3) may be written

approximately as

(7) u~ (CosCL+Cos uejkrSP r

S

We note that (7) is the generalization of (1) when S is not necessarily a wave-

front, but any surface The only assumption used to obtain (7), it should be

noted, is that the field has a geometrical optics behavior on S, but not neces-

sarily inside or outside of S. and that P is several wavelengths from S.

Let us assume that S is a wavefront and that there is one stationary

phase point, 0, on S with respect to P.

Let us introduce a Cartesian coordinate system with the negative z

axis along n at 0. Let the surface S be smooth at 0, so that by suitable

choice of x and y axes, the equation for the surface may be written in the

neighborhood of 0 as
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2 2
x

(8) z - + Z +
1 2

where R and R are the principal radii of curvature at 0. Then to first
1 2

order in x and y

+- 22 2r xZ Y2+ (z+P pl p + "Y2 +y
(9) r 2 P 2 + "'"

where

R 1
+ p R 2+ p

(1)RI1P A R 2P

We may therefore, write (1) as

-jkp (- 'l+ ' +- Y~2i _ (axI+)y)

(l1 up = j e - .k p  u(l +cosT e dx dy

S

where in order to retain only the leading terms in (8) and (9), we must assume

either that (a) the only important contribution tothe integral comes from the

neighborhood of 0 or (b) that the principal curvatures R 1 and R describe

S well over the area where the contribution to the integral is significant.

At this point we shall assume that S is bounded by curves parallel

to the Fresnel zone boundaries. This treats a case of considerable interest

and also, in a sense to be considered later, gives upper and lower bounds for
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the field values for more general boundary curves. To be explicit let us make

the change of variables in (11) from x, y to /P, i defined by

(12) c os 0 x, sin d = Y,

where the surface is defined by

(13) I < < z on S.

Since

k d
(14) L dx dy =d dC,

we may write (11) as

uP= -jkp -j2Cull/e-jd
(15) up = Z/--__ e

fl

where uI(P) is a "weighted" illumination, averaged with respect to 0, defined

by

Zir
= 1 I U(e, GH1I + Cos #

(16) u( do,

0I P

with the property that
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(17) u 1 (0) = u(0, Q) = u(0).

(a) Gain

In particular, if the observation point distance p is large compared to

the diameter of the wavefront, and if the total curvature of the wavefront is not

excessive then

(18)r 1+cos
p - 2

and, in this case, u1 (P) is the illumination averaged with respect to the angle Q.

2w

( 8a) ul)= u(, d.

0

A quantity of considerable interest is the gain G at P which may be

defined as the ratio of the power density at P to that which would prevail if all

of the power flowing through S were radiated isotropically from the stationary

phase point. Under the assumption that (18) holds, the gain is given by

(19) 
G=

lu 2 dx dy/4rp 2 )

Using (14) and (15) and employing the fact that the area A of the wave front

S: < : 5. '2 is given by



-11-

(20) A I"dxdy 2 >dd

s o061

we may write (19) as

4A e - j  u( 0, 9) pd,/d 9
4 AJSI  j

(21) G= e upta, P dod
2u 2 (p, Q)edpdQ
(do

As a check, observe that if u((, 0) is constant and 2< < iw, then (21) reduces

to the well known formula for maximum gain for a uniformly illuminated aperture

(22) G 4= A

X 2

In the more general case it is of interest to determine what real function

u(e , 0) maximizes G. The physical application arises with a microwave optical

system which produces imperfect focussing fed by a point source feed whose primary

pattern should be selected in so far as possible to maximize gain. The mathemati-

cal problem is solved exactly in the Appendix, where it is shown that at least a

50% aperture efficiency may be achieved with the optimum illumination. By con-

trast if u is constant over the first Fresnel zone and zero elsewhere, the aper-

2
ture efficiency is 4/w = 40. 6%, and if u is a Gaussian, of the form

(23) u( , 9) = eb



the optimum value of b for gain is unity (27. 6db taper at the edge of the first

Fresnel zone) and the aperture efficiency is merely 16%. (See also, Appendix, p. A4).

(b) Slowly Varying Illumination

An important special case occurs if the variation of the illumination func-

tion ul( V) in (15) is small per cycle of the exponential.

First let us integrate (15) by parts

- j k p  jRO1Z  
j P?2 t

(Z4) up p (e u e uiyPz e Au.o)

as As k -> co, the integral term in (24) is of order 1/NTk, whereas the

integrated terms are of order unity. In any case, if the percentage variation

of u 1 (P) is small per cycle of the exponential, the integral term in (Z4) may

be neglected, Lo obtain the approximation

e -jkp -JP1 2 -JZ

(25) ap (e ul((l)- e Ul(02)).

The basic equation from which the principal theorems of geometrical

optics may be derived is a special case of this formula: =0, = 00"

This corresponds to the case of a closed or infinite wavefront with no boundary,

i.e., no diffraction. If there are no sources at co, u1 (co) = 0, and from (10)

and (17),

(26) uP = u(O)e - j k p RIR-+) S, unbounded.



-13-

Eq(26) is the same as eq(51), p 122 of D_], and is used in [.1] to derive the the-

orems of geometrical optics

If the wavefront is open, contains the stationary phase int and has a

single boundary curve v=F2 parallel to a Fresnel zone boundary, the correct

formula to use is eq(25) with = U

J- jkp R 1 R 2  S contains
(27) up= MU) - e u())e ' (stationary phase

Rp)(R 2+p)point, has single
[ boundary =,-= 2

Similarly, if the wavefront has a single boundary curve but does

not contain the stationary phase point, the correct formula is obtained by setting

-jPl2 ( RIR 2 S excludes

(28) up e u 1 (,)e -  R+ pR+ ) stationary phase
'1 P,' 2 P point, has single

boundary tO=f1.

The latter is of interest in calculating the effects of spillover (see Section V),

An important special case of (27) occurs when S consists of a small number

of Fresnel zones By the assumption that the variation of ul (P) is small per cycle,

we have approximately that if S has an odd number (Zn + 1) of Fresnel zones, (27)

becomes

u-k p  RIR 2 S contains first
(29) up =(R+ p)(R+ p) (2n+l) Fresnel zones,

1 p 2 n small
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If S has an even number (Zn) of Fresnel zones, (27) is approximately zero.

From (29) and (27) we see that.

If the percentage field variation is small over the first N Fresnel zones

of an observation point P, the field at P is approximately doubled or made to

vanish when the wavefront is blocked or "stopped down" to the area of these N

Fresnel zones, depending on whether N is odd or even, respectively.

Another way to attempt to increase the field strength at P is to focus

the energy to P. If all of the energy over an area A of the wavefront were fo-

cussed with respect to P by some means which need not be specified, the

phase factor in the integral in (15) would be suppressed. If then only A were

illuminated (15) could be written as

JUav 
e-

jk p

(30) U = p

where u is the average weighted illumination over A as defined byav

I ( u
_____

s

u(k + ost
(31) u = - )A.av A p

A

From (10) and (20), the area of the first N Fresnel zones is

(32) A N  p f  12
N (R I (+ p)(R2 + P)

In this case (30) becomes
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-jp R First N Fresnel zones
(33) up =jNiruae 3  I focussed,other blocked.

I(R 1 p-(R 2 1,F,)

so that, if the percentage field variation is s maL over the first N Fresnel zones

of an observation point P. the field streag h at P is increased by Nir, when the

first N Fresnel zones aie focussed. to P nd the remaining zones are blocked.

-III - DETERMINATION OF THE TWILIGHT ZONE

If an observation point P in front of a bounded wave front lies on the edge

ray or shadow boundary, the fri-&v f,:-w Fresne_' zone-, are about one half of their

normal size (Figure 1), The field at P iz- tlaer about one half of its value (-6db)

compared to an unbounded wave front witi7, th e same strength in the neighborhood

of the stationary phase point 0 Consider the loc.Js of points L bon the lit side

of the shadow boundary so that the first Fres:nel zone is interior to and just tan-

gent to the aperture boundary; and in a similar fasnrion, the locus of points L d

on the dark side of thje shadow boundary so that. the first Fresnel zone is ex-

terior to and just tangent to th! apo' rture bounday y (Figure 2).
$4',4ZED ARE'MS= ODD AAW5AAZ ZCK15
AL41N 40,945 = E4VI ~fA1'WAEL Z1C4'E5

OA17~ OA6

aeIV*7E~T #qnpw Lsj xw4wssr PowAr
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Suppose we consider the case where the field u over the first few

Fresnel zones is not too far from uniform. Then the contribution at P of

the Fresnel zones are roughly proportional to their area. The points L b are

locally somewhat brighter since the odd Eresnel zones are suppressed by the

boundary somewhat more than the even zones. Similarly L d is somewhat

darker locally. As one moves across a shadow boundary starting from the lit

side the field amplitude and phase has ripples with the last and largest peak at

Lb just before the shadow boundary or -6db point. The field in the dark zone

also has ripples with the first andlowest relative minimum at L . This be-

havior is illustrated in Figure 3. It is a generalization of the well-known

Fresnel integral patterns for the near field of a uniformly illuminated,linear

aperture.

The region between Lb and L d is called the "twilight zone."

I FI6.3

i~umm A644 7 ZOVmN
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The boundary curves of the twilight zone are hyperbolas which may

be readily determined as follows. Let Pb be a point with polar coordinates

(r, 0) on the locus Lb. Let the stationary phase point be 0 and let the bound-

ary point on the first Fresnel zone be B. Let R 1 be the radius of curvature

of the wavefront in the plane P bOB. Let the origin of coordinates be the cen-

ter of curvature of the wavefront at 0.

0d

ZOEONEM4P

LO CUS OF 71E 7"W11 _CF0W
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The condition which defines P b as lying on Lb is

kx

(34) PbB = p+ *, r=p+R1

where

(35) Pb =-r 2 +R 1
2 - 2Rlr cos 0

The locus L b is thus given by

(36) r(k - 2R 1 (1 - cos 0)) =R -"X

This is an even function of (. Negative values of r actually give Ld , so

that the twilight zone is symmetric about the shadow boundary. Equation (36)

is a hyperbola which passes through the point r = R 1 , Q = cos (1 - )
81

on the wavefront and is asymptotic to the ray 9 = cos (- - 8RI

If R 1 > > X, an approximate form of (36) is

X(r - R1 )
rR

1
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IV - GAIN OF A SPHERICAL REFLECTOR

(a) Point Source Feed

An application of the ideas developed in the preceding sections may be

made to the analysis of a spherical reflector. Suppose at first a point source P

is located at a distance )/ from the center of a spherical reflector of radius

R >i . Let the equation of the sphere in cylindrical coordinates be

(38) z2+ rZ= R Z

with z axis along OP. After reflection the phase at a point at polar distance

r in a plane perpendicular to OP, relative to the phase at r = 0 is given by

(39) : +1-Zh - ZR +z , z = - r

This function is plotted in Figure 5 for several values of I . As is well-known,

the point P at L= R/2, the "paraxial focus," produces optimum focussing (flat-

test phase front) for small values of r.

The first Fresnel zone, in this case, occupies a circle of radius r'

obtained by equating 0 in (22) to -X/Z and tl to R/Z. The result is given

by

(40) r' + 4 + )

whh1 
3 X 

3 ZaR

which, if R > > X, is approximated by
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(41) r' I, (2k)U4R3

If the physical reflector is of such radius r1 at the aperture that

r' < < rI , then maximum gain is obtained approximately when only the first

Fresnel zone is illuminated. Assume then that the primary amplitude pattern

is such that a 50% aperture efficiency is obtained over the first Fresnel zone.

This may be achieved by the illuminations described in the Appendix. Then

(4Z) G I Z r' )2= 2Zr r _ 2 7 .9 ()3/Z R>>X.
r - 2 -X

If, on the other hand, the source is located somewhat closer tothe re-

flector, the area of the first Fresnel zone can be made larger. This area is

maximized with respect to j when the maximum of 0 with respect to r has

a value of X/2. In this case the first Fresnel zone has a radius r" which is

the value of r (other than r = 0) at which /0 = 0. The maximum occurs at

(43) r -Rfl - ( R)2

Strictly speaking, the assumption of fixed radii of curvature describing the
wavefront near the first few Fresnel zones does not hold in this case. It
is thought that no serious error is introduced thereby in this case, in the
consideration of optimum gain. The optimum illuminations, however, may
be appreciably different from those described in the Appendix.



and the optimum I is

(44) _L - 4R + R Z+8+R R R , <

and the radius of the first Fresnel zone is

(45) r 1 X z~ -

1(8X)1/4 R3/4 = NZ r'.

Hence if r" < r1 and the point source is optimally located a distance t given

by (44) from the center of thi sphere, the peak far field gain is approximately

i ,R 3/2'

(46) Gr,, = 2Gr,55.8(- ,X

These expressions are plotted in Figure 6 for the dimension of the radio

telescope at Arecibo, Puerto Rico: R = 870', rl= 500'. Other examples of

interest are

f R G r db Gr ,,, db G L

40 kmc 1.51 45.67 48.67 40

I kmc 5' [41.78 44.78 38

The gain values GL in the last column are quoted from ref[5] . It

appears that these are several db below what they could be. Such low values

Experimental results.
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could be obtained if the feed illuminated two or three Fresnel zones or was not

near an optimum taper. For example, as shown on p. 12 an optimum Gaussian

feed pattern would have almost 5db less gain than the listed values for Grt and

Grot *

(b) Wide Flare Feed

If we use a large conical feed with flare length r 0 and vertex angle 9.2

it has been determinedZ J that to first approximation, the phase front is a spheri-

cal cap in the lit region (Figure 7) with phase center at the vertex. In the twi-

light zone, the phase is determined by the path length ABC in Figure 7.

aC

A1. "7

I-,I
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The distortion of the spherical phase front in the twilight zone is such

as to correct for the spherical aberration in this region. Let us examine this

quantitatively.

.CENTER OP 3F6/EME

From the geometry of Figure 8 we have

(47) = sin- r i

R 0= fR 2 +1 ?'-RI cost

a sin-
R0 0

R,= 'R 0 2+ r 0 2 - 2R 0 r0 Cos CL
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If a is less than zero, the ray from the focus to the general point C on the

reflector is in the lit region and the phase error after reflection by the sphere is,

as Yiven in eq(25)

22
(48) O = R( -2R z+. , z = R cos R z- r

If a is greater than zero, the ray is in the twilight zone and the phase error

after reflection by the sphere is

(49) /. -- r0 + R1 - R0 + L"

In addition, a phase delay equivalent to an additional path length of X/8 develops

in the twilight zone. If we assume that this extra phase delay is proportion-

al to r 0+ R 1 - R 0 throughout the twilight zone, the total phase error in the twilight

zone becomes

(50) A ( (r+ R -R)+

This result agrees fairly well with some measured data (see Fig. 29, [21). The

correction term "(5/4)(r 0+ R - R0 )I can be used to enlarge the first Fresnel zone.

When this term exceeds 5X/8, however, the illumination is so low in magnitude

that it is not effective in increasing the aperture area. Typically the E plane

illumination in this case has dropped to 15-20db. The H plane illumination has

dropped even further - to perhaps as much as 30db (see Figure 23-28, [2]).
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but by proper mode excitation and control in the horn there is reasonable expec-

tation that the H plane taper can be made as slight as the E plane taper. There-

fore the first Fresnel zone should be enlarged no further than the point where

5X(51) = 5

If we solve this expression for z we obtain

(52) z 5X -z +?R- f(R-?1) 2+ 5X(5z - 2 4--

For the optimum feed position, I is given by (44) and z becomes

(53)~= 3~ -1 -R
(53) zRF4I-32,+ for R>>X.

This corresponds to a value of r given by

1- IX/4 R3/4 5 1/4 3/4 1/4,

(54) r1' =1.88ZX R 301.5X for R>>X.

The ratio

(55) "- = Z- = . 8db

is the possible increase in gain to be obtained by a properly designed wide
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flare horn. It is possible to choose r 0 and 00 in a number of ways so that

the first Fresnel zone can actually have a radius as large as r"'. First of

all, we require that when r = r"'

x(56) r +R - R o

0 1 0 2'

This implies that the point B of Figures7 or 8 must lie on an ellipse with foci

at A and C. Then we must require that the angle 90 is sufficiently large so

that the maximum of 0 (which equals X/2, and occurs at r = r") occurs when

a is considerably less than zero. This will ensure that the maximum of A

occurs also at r = r" and has a value of X/2. The value of 90 should be chosen

no larger than necessary for this purpose as the aperture blocking increases

with increasing Q0"

This type of horn is a practical design with a good illumination taper

for low spillover and broad bandwidth. The theoretical gains G, and Gr

can not be realized with prac ical feeds. Conventional horns which illuminate

only the first Fresnel zone actually spillover and illuminate some of the higher

Fresnel zones which subtract from their gain, but the well designed wide-flare

horn has less spillover.[zJ The wide flare horns show in Figure 22 Cz were

tested with a 69" radius, 10 foot aperture diameter spherical reflector over a

4 to 1 frequency band. The distance D between the center of the sphere and

the point where the flare intersects the waveguide transmission line was de-

termined for maximum gain. Resulting pattern data is shown in Table 1.
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V- FOCUSSING OF SPILLOVER ENERGY

(a) General

In this section we apply the results of Section (II-b) to the analysis of

focussing of spillover energy. The problem can be formulated in general terms

as follows: If we are given a wavefront, such as the field produced by a feed,

which illuminates a focussing device such as a lens or subdish of a Cassegrain

system, there is also generally some energy which spills over or does not strike

the focussing device. If the contour of the focussing device is parallel to a

Fresnel zone boundary of the incident wavefront with respect to some field point

P shadowed by the focussing device, this spillover field may have a considerable

intensity at P. The situations of greatest interest usually occur when P is at

the peak of the secondary beam.

Cumparing (26) and (28), we see that the spillover field intensity at P

is the intensity which would be present if the focussing device were removed,

reduced by a factor which is the average illumination taper at the edge of the

focussing device. For example, suppose a feed of nominal diameter Df illumi-

nates a lens of circular aperture and diameter D Suppose that the gain of

the feed alone and the feed with lens is respectively

D f 2 -fD b 2
(57) Gf = f(-X-) Gb = a b(--) ,

where If and- qb are the aperture efficiencies of the feed and of the feed and

lens respectively. Then the power of the spillover energy relative to the
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total focussed energy in the peak direction in the far field is

u12 Gf u12 f D
(58)UGf Ul)f (Df 2s Gb - b  D b

where u1 is the illumination taper at the edge of the lens of the incident feed

energy as defined in (16).

For example, if the average illumination taper is 10db, and the gains

of the feed and feed lens combination are respectively 12 and 23 db, then the

spillover energy will be (23-12) + 10 = 2ldb below the peak energy of the main

beam at the peak of the far field pattern.

Depending on the path difference, D between the lens-focussed and

spillover energy, the signals could interfere constructively or destructively.

Thus in the preceding example the spillover energy might add or subtract . 6db

to the gain as computed neglecting the spillover energy. Referring to Figure 9

the path difference D is OAP- (OB + BC + CP) where BC is

p1

AFlci9

z~f Dx _ i 1
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the refractive index times the actual path length. D is likely to be large in

wavelengths, so that whether spillover adds or subtracts from the gain would be

frequency sensitive. The average illumination tap er may be obtained as the volt-

age average of the E and H plane tapers for typical "dipole mode"-type feeds.

For example the 10db taper above might result from a 6db E plane taper and a

17. 6db H plane taper.

If the observation point P is off the peak direction the directivity of the

lens pattern and the spillover pattern reduce both signals. However the directiv-

ity pattern of the spillover energy being essentially that of a "ring source" is

approximated by the Bessel function of order zero and has 7.4 db sidelobes.

If the lens has zero thickness at A, this will not harm the overall sidelobe pattern

otherwise, it can add new sidelobes at a level of about 21 + 7.4 = 2&4 db below peak.

In addition, the sidelobes of the feed itself are har dly affected by the lens and will

appear in the far field. For example in the E plane where normal feeds have

about a 13db sidelobe level, one might expect (23-12) + 13 = 24db sidelobes. These

lobes may occur at very large angles where normally much lower levels would be

expected.

If the focussing device were a circular aperture reflector instead of a

lens the spillover would cause a back lobe. Assuming for example, the same

feed and the same antenna gain as in the previous example, the back lobe would

be only 21 db below peak, whereas elsewhere on the backside of the reflector one

would generally obtain much lower power levels, for example 30-50db. The feed

thus puts a little bright spot centered on the dark side of the reflector.
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Spillover focussing may be considerably reduced if the contour of the

focussing device is not parallel to a Fresnel zone. If, for example, about one-

half the contour coincides with one Fresnel zone boundary and the other half coin-

cides with the boundary of the next Fresnel zone, the "bright spot" on the dark

side can be made to vanish. If this is accomplished in some manner such as

O LLOVER IOSI:P/h, I , Ve

D($~A £6WC

4(S/M DFWCCZ

OR 4CTreV'5/OM3Z C ,c~CQ35/AAS Z"eVA

FIC. 10
shown in Figure 10 the spillover will not be well focussed even at a point

nearby the focal point.

(b) Cassegrain Systems

From eq(58) it can be seen that the spillover energy becomes more im-

portant as the feed gain increases relative to the total antenna gain. In practi-

cal designs this situation occurs more frequertly in a Cassegrain system. Typi-

cally a Cassegrain system is designed for "minimum blocking" - this is almost

essential if the main reflector diameter D is less than 100 or ZOOX. Minimum
m
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blocking occurs when the feed and subdish block equally. According to [6], in

this case the diameter of the subdish Db satisfies

2mX

(59) Db =

where F is the focal length of the paraboloid, X is the wavelength and k ism

a measure of the amplitude taper defined by

(60) k =

where 4s is the half-angle subtended by the subreflector at the center of the

feed aperture. In'the H plane of typical feed horns for a lOdb taper k equals or

is slightly less than one and for a 20db taper k equals or is slightly less than

one half. In the E plane, k is slightly larger.

In the minimum blocking design, the feed diameter Df is proportional

to the distance from the focus to the feed aperture plane, and may range from a

nominal value of about one wavelength when the feed is close to the subdish to

D b itself when the feed is in the vertex plane of the main dish.

In the latter case the relative gain of the feed to the main dish is roughly

equal to the ratio of (D b/Dm ) and for a value of D of 50 to lOOX (using (59))

is typically 20-25db. Thus the effect on gain of the focussed spillover energy is

of the same order of magnitude as in the preceding examples.

The effect on the antenna sidelobes is considerably different, however.
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The main lobe of the radiation pattern of the spillover energy is about D /Db

times as broad as the main lobe of the total antenna pattern. Therefore the spill-

over main lobe covers the first few sidelobes of the complete antenna and may

add construct i,.. , )r destructively with the highest such sidelobe depending

critically on the frequency or exact geometry.

Usually in Cassegrain system de, y;n aperture blocking is a major design

consideration while feed spillover is neglected The latter may be as important

as the former The difference between the field strength of the unblocked and

blocked energy is proportional to the relative area of the blocking subdish to the

main dish.

(61) 2( -)2
D

m

The factor 2 arises from an approximation of the aperture illumination taper

by a quadratic which emphasizes the center region, From (58) the field strength

of the spillover energy, in the case of the vertex feed (Df =Db), is

D b

(62) uD

m

The latter is more important than the former if

2D

(63) uI > D
m

This is often the case
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In the design for minimum blocking described in [6] and embodied

in eq(39), the design taper of the subdish illumination is not specified. We

conclude this section by suggesting a procedure for determining this taper in

an optimum way. The blocking and spillover voltages of (61) and (62) are gen-

erally in a rapidly varying phase relationship with respect to frequency. The

average total power in these two unwanted signals is then approximately

(64) P =4( D -b ub Zf Z

m m

If we use a linear relation obtained by fitting the data mentioned in the defini-

tion of k in (60) we have roughly

(65) u1 = .4k- .06, .05< u 1 < .3.

Also, if the angle subtended by the subdish is not large so that

(66) ts -. tan +s

then

2 XF

(67) k = m

Db

From (65) and (67), (64) becomes
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D .8XF . Df )?
(68) P = 4 m) + (. M -06) (--U z"

m Db m

With Df fixed, there is a value of Db minimizing Pu . This is the minimum

"blocking and spillover" design.
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APPENDIX - OPTIMUM FEED AMPLITUDE PATTERN FOR MAXIMUM GAIN
OF A BOUNDED WAVEFRONT SOURCE (SEE P. 11)

Let

(Al) R% = M(u)M(u)

N(u 2

where M and N are linear operators (M is the conjugate of M).

6z ar

(AZ) M(u)= f e-J' u(, p dtOdQ

P0

N(u 2 ) f {uZ( ,OQ)edpdO

90

and from (21)

(A3) G= 4AR

X 2 2 P 2× z f-1z

Suppose u(V, Q) is the function maximizing G and hence R also, then R

will be stationary for small * and arbitrary real functions v(,O, 9). Accord-

ingly the linear term in * in

(A4) (u + ev)= (M(u) + E M(v))(M(u) + fM(v))

N(u s+ a iuv + vl

must vanish for all v.
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This implies

(A5t) 4, () = =M(U) Ru).
N(uv) N(u2

Now let v be a Dirac delta function of (1, Q)

(A6) v S{Po' 0 ).

(A5) reduces to R0

i 2 2 2

e ie 010 u(',I )djd

(A7) to 0={AT} fou( fo' go =

where C is a constant, independent of P and *0' Accordingly u(P 0 ,Q 0 )

is independent of 6 0

(A8) u(P 0 ' 0) = u(f 0 ) = 1(D cosf 0 2+ B sint 0
2

where

(A9) D = Zr CP 1 s 2 u)Pq

B =Zr sinf 2 u( )9d9"
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If we insert (A8) into (A9) we may evaluate C

(AIO) 2= _ -r 2 l0Z + Is in(/g, - l )

and obtain a linear relation between B and D

(cos 2101 - cos 2/z )B
)Zlsinf2z2-A 2 )I + sinZf 12 - sinz 2

2

unless the aperture contains an integral number of Fresnel zones

(A12) 02 2 = /i1 + nr

in which case, B and D are independent and arbitrary. We also note

that C is the optimum value of R(u) and the optimum gain from (A3) is

'A I13) G =ZTA I+ I sin(, z. -1 lZ12

We see therefore that when the aperture contains an integral number of

Fresnel zones, the aperture efficiency is exactly 50%/, otherwise it is larger.

The maximum aperture efficiency for an aperture larger than one Fresnel zone

is 1/2 + 1/3w = 60.5%6, and occurs when = 2 i2 + 31r/Z. In this case, the

optimum illumination is

(A 14) u(/, ) = cosf 2 + sinl.
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The pattern of an average feed horn as given in Figure 5 of "Some Feed

Horn Design Curves," by W. F. Gabriel, NRL Report, dated June 1951, was used

to evaluate eq(21) for various aperture tapers. It was determined (Calculation

151-(14)) that for maximum gain the 20 db point of the illumination should be

placed where the phase error is 1760. In this case the aperture efficiency over

the area illuminated to the 20 db point will be 33. 9% and the maximized gain will

be

13.1
X=



II
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